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This paper details the procedure of the real gas Riemann solution in
the Lagrangian approach originally proposed by Loh and Hui for perfect
gases. The extension to real gases is nontrivial and requires substantial
development of an exact real-gas Riemann solver for the Lagrangian
form of conservation laws. The first-order Gudonov scheme is
enhanced for accuracy by adding limited anti-diffusive terms according
10 Sweby. Extensive calculations were made to test the accuracy and
robustness of the present real gas Lagrangian approach, inciuding
complex wave interactions of different types. The accuracy for
capturing 2D oblique waves and slip line is clearly demonstrated. In
addition, we also show the real gas effect in a generic engine nozzle.
) 1993 Academic Press, Inc.

1. INTRODUCTION

Enormous progress have been made in the past decades
in computationai fluid dynamices in terms of discretization
and solution techniques. In the 1980s, we have witnessed
exhaustive exploration of upwind, monotone schemes,
notably exact Riemann solver by Gudonov [ 1] and various
approximate Riemann solvers [2-5]. However, these
developments are nearly restricted to the Eulerian descrip-
tion of the conservation laws vs the Lagrangian description.
The notion of using the Lagrangian approach is not new,
Particularly noteworthy is the work carried out at Eos
Alamos and Lawrence Livermore Laboratories during the
1950s and 1960s. In the Lagrangian approach, the computa-
tional grid (fluid pocket) is embedded in the fluid and dis-
torts with the fluid motion. The most scvere limitation is its
inability to cope with the Bow with large distortion since the
grid becomes tangled and disordered [67. Thus, some com-
binations of both the Eulerian and Lagrangian approaches
were attempted, such as the arbitrary Lagrangian—Eulerian
{ALE) method, to allow much more freedom for accom-
modating fluid distortion. Generally, a continucus rezoning
procedure is needed to maintain the grid regularity as far as
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possible. This procedure requires the specification of grid
displacement during the evolution of fluid. Unfortunately,
toss of accuracy in the solution is also accompanied via the
continuous geometrical interpolation. As a result, since the
late 1960s the Eulerian approach has been favored for its
grid regularity and ease of controlling grid distortion even if
the fluid is greatly distorted. Flowever, the very virtue of the
Lagrangian approach to loliow the luid movement, specifi-
cally the trujectory ol a slip ling, is compromised in the
Culerian approach through the mixing of mass (ftuid)
between neighboring grid points, without any distinction of
slip boundary and grid boundary. Thus, the Eulerian
approach comes at the expense of precise slip line definition.
Recently, Loh and Hui [ 7] have successfully demonstrated
the capability of a new Lagrangian formujation that
climinates the step of remapping. Indeed, in the case of
supersonic flows, the computational grid is automatically
generated f{ollowing the streamlines. Grid of severe
distortion caused by complex strong wave inleractions or
geometrical boundary can also be easily tolerated.

With the renewed interest in high-speed flight, the real gas
and nonequilibrium effects must be taken into account in
the analysis of flow in this regime. Several extensions of the
above-mentioned upwind schemes have been made possible
in the Eulerian approach (see, e.g,, [8, 9]). Although there
is no conceptual difficulty in the extension, however, some
generalization must be made. The procedure certainly
becomes more involved. In the present Lagrangian
approach, the real gas Ricmann solver is a basic building
block for the wave structure at the interface straddling two
ncighboring fluid volumes. The cxact solution of the
Riecmann problem, instead of the approximate solution, is
sought in our study.

In Section 2 we present the Lagrangian {orm of conser-
vative laws and the equation of state (EOS) used for the .
equilibrium air. The first-order Godunov scheme is
enhanced to a high-resolution TVD scheme. In Section 3,
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we describe the exact Riemann solution of Lagrangian
formulation for real gases. Finally, several test problems are
given in Section 4,

2. THE LAGRANGIAN CONSERVATION FORM FOR
REAL GAS AND APPLICATION OF
HIGH RESOLUTION TVD SCHEME

Based on the new Lagrangian formulation of Hui and
Van Roessel [10], Loh and Hui [ 7] used the stream func-
tion £ and the “Lagrangian time” t as the independent
variables (Fig. 1) in their computation for 2D steady super-
sonic flow. In this case, the Lagrangian time is indeed also
interpreted as the physical time assigned for each fluid
particle. The conservation form based on this variable
transformation are given as
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FIG. 1. Computational domain and mesh.
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where, as usual, u, », p, and p are respectively Cartesian
velocity components, pressure, and density of the fluid;

é dy
v==, v=2Z,

¢ oL
are the geometrical quantities representing fluid particle
deformation during marching forward. The variable

K=p(uV—ol) {2)
is the mass flux and H is the specific total enthalpy,
H=(+07)/2+h(p, p), (3)

where £ is the enthalpy. The first four equations in (1)
represent the physical conservation laws of mass, energy,
and momentum, respectively, while the last two arise from
the compatibility condition between the z-derivatives and
the &-derivatives, representing the deformation of a fluid
particle.

For steady flow at supersonic speed (1) holds for any
gases. For real gases, the equation of state (EOS) is more
complicated, but any pair of independent thermodynamic
variables are sufficient to describe the state. In our
formulation, we choose

h=h(p, p)=el(p, p)+ p/p.

The internal energy e is a prescribed function of p and p. The
one we use throughout the present paper is Tannehill’s
equation of state for air [11], which is based on the table
lookup interpolation, with a reported error of 4 %.

The numerical solution of {1) by Godunov scheme and
the consequent high resolution TVD scheme with Sweby’s
flux limiter has been described in detail in [12, 137, respec-
tively. Here, to avoid repetition, we shall only give an out-
line of the procedure, while pointing out the differences and
describing in detail the additional procedures required for
real gases.

In order to solve the initial boundary value problem of
the hyperbolic system (1), the computational domain
(Fig. 1) is divided by streamlines 0=¢,<¢, <&, <
cov <y, into N cells of size i;=¢,—¢;_,, j=1,2, .., N.
Initially at time t = 7,, the flow variables Q = (p, p, u, v)"
and the geometrical variables (U, V) are given along the
initial time line. The solution is to be evaluated for every cell
=12, ., N attime =1, 75, ....

For =z, the flow variables Q and (U, I} are assumed
given and constant within each cell j, denoted as Q;, U,, and
V;. A sequence of Riemann problems with initial data

o-{g."

‘:>§js

i=1,2, ..
I

,N—l, (4)
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are solved to determine the interaction between flows in
adjacent cells and subsequently the fluxes F} '/ at the cell
interfaces. The solution procedure for real gas Riemann
problem is substantially different from the one for perfect
gas, the details are given in Section 3. Then the divergence
1 H n+1
theorem is applied to update Ef to E7 7/,
Ejt =K - MES S - F ), (5)
where A= 4z, /b, and 41, =1, - 7, is the time step size.
To enhance the numerical result, we use Sweby’s formula
[12] to extend the above first-order Godunov scheme to a
high resolution TVD scheme in the same manner asin [13],
Hel __gon "+ 12
El"'=E/-24_F;;

F+172

—Aid_ {qﬁ(}‘; ) a_j++ 172 [A F_."+ 1/2] "

—d(r; )y [4F, 2] b (6)
where
A_givin=8ir1n— Bi-12s
(4 Fj+1,f2]+ =F( f+1)— F;':llj?,
[4F;, 2] = F;Llfzz* F(Q7), (7
aji+ = RS Vi il
vh 1/22%%,
it it
e [gﬁ AU, I,Q)TI
! aji)r 1y AU y2) =
{i=3,4,5,6) {8)

We note that since e, = K, e, = H are constant for all ¢ along
a streamline, the numerical procedure needs to be applied to
only four equations (same number as in the Eulerian case),
namely, equations for ey, e,, €5, and ¢,. The Van Leer
limiter function,

0, r<{,
(9)

, r>0,

is employed throughout this paper since it was found in
[13] that there is no substantial difference in the numerical
results between using different limiter functions. Moreover,
discussion of the choice of the limiter is beyond the scope of
the present paper.

In real gas computation, the decoding procedure to
recover Q= (p, p, u, )7, and (U, ¥) from E=E7~"is more
complicated than that for perfect gas. The following gives
the detailed description of the decoding.

'LOH AND LIOU

First, (7, V') are obtained directly from e and eg:

U=€5
V=€6.

Then, if p is known, u, v, and p are easily computed:

_€ey— peg _ e+ pes
=T U_—1
€ €

U

(10)

2
[(5’336_9495)_19(92‘*’3@)].

g (11)

In order to solve for p, by substituting (10), (11) into {3) we
have

flp,py=(e5+el)—(es+el) p*

+2e3e(p, p)— 20,6} =0, (12)
where e(p, p) is the given EQS and is an awfully complex
function for real gas. In the present paper, EOS are obtained
from Tannehill’s subroutines {11]. In the case of perfect
gas, (11} and (12} are combined to yield a single quadratic
equation for p; one of the two roots can be ruled out for it
gives nonphysical solution. On the other hand, the real gas
case requires a simultaneous solution of the coupled non-
linear system of (11) and (12) for which we employ the
Newton iterative procedure. Due to the presence of inflec-
tion points in Tannehill's equations of state, which is
associated with the change of internal degrees of freedom of
components of the air, the Newton iteration fails to converge
and leads to a limit cycle (Fig. 2). We remedy this by
introducing a bisection approximation,

£ = 1(xm 4 X ),
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FIG. 2. Possible failure of Newton's iteration around an inflection
point in the solution of ¢{x) =0 and the bisection method.
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where x and x'"* " are two successive Newton’s iterations
with opposite signs in their corresponding object function
values, Using the bisection approximation guarantees
convergence of the iterative procedure at the price of slightly
reduced rate of convergence in the case the original Newton
procedure converges. Such a modified Newton iterative pro-
cedure is used not only in the decoding process but also in
the solution of Riemann problem as well. Details will be
given in the next section.

The marching computation at the new time linet=1,,, ,
is compiete with the evaluation of the new cell locations
(x7* yrth), j=1, 2,.,N. This is done by simple
integration along the streamlines:

n41 __ ] [ 741
Xt =xl A, (wiHul T,

n41 " 1 n a1 (13)
yiti=yl g dr, (of +077 )

A note of caution about determining the marching step is
warranted at this point. In addition to the usual Courant
condition for stability, there is another consideration
concerning the interactions (or Riemann problem) between
two adjacent fluid particles which are separated by a strong
slip line (also a streamline). Because of the difference in flow
speed, they will gradually lose physical contact and even-
tually become separated, thereby rendering the Riemann
solution inappropriate. A simple remedy is to adjust the
time step At of the faster-moving cells so that the two cells
across the strong slip line can march forward in the same

distance {,/u”+ v A1) and thus keep physical contact all
the time.

If there is a solid boundary, the boundary Riemann solver
is employed. Details about the boundary Riemann solver
are described in the next section. If there is any stope discon-
tinuity at the solid boundary, the same special treatments as
described in [47 are applied to minimize numerical errors.
As a matter of fact, these special treatments amount to
apply a local exact solution at the sudden turns of the solid
body surface.

3. SOLUTION OF THE REAL GAS
RIEMANN PROBLEM

As a building block, the Riemann problem and its solu-
tion play an important role in the Godunov-type schemes in
the numerical solution of invicid compressible real gas flow
problems. In this section, we consider the real gas Riemann
problem and its solution. As we have mentioned before, our
purpose is to develop an “exact” numerical method for com-
puting real gas flow that is accurate to the extent warranted
by the equations of state, i.e., by the table lookup interpola-
tion. In this study, we choose not to make mathematical
approximations in the solution of the real gas Riemann
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problem; and the numerical approximations are made as
accurate as possible. In other words, we seek the exact
Rigmann solution in the present calculations. In principle,
the solution procedure is similar to the one in [7].
However, due to the real gas effect, the detailed steps are
different.

The Riemann problem for the two-dimensional steady
supersonic real gas flow is the initial value problem with the

constant data,
Q — {QTs
QB E)

>E
&> (14)
§<i;,
as initial condition at t=0 for the flow state Q=
(p, p, u, )T and with the equation of state

e=e(p, p), (15)

where the subscripts T and B denote top and bottom states
{Fig. 3), which are counterparts to the left and right states
in one-dimensional unsteady flow. The equation of state
(EOS) (15) is prescribed as a given function.

The solution of the Riemann problem is self-similar in the
variable ¢/7 {or z/£) and similar to the perfect gas Riemann
problem, consists of three types of elementary waves,
namely, the oblique shock (+), the Prandtl-Meyer
expansion (—), and the slip line (0), as illustrated in Fig. 3.
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FIG. 3. Real gas Riemann problem and its solution.
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We will consider these elementary waves separately. Let
Q, and Q be the states across one of the above +, —, and
0 elementary waves. Then there are three cases:

{a) The wave is a slip line. In this case, we simply have

P=po=p*,
0 {16)
f = tan ~'(v/u) = tan " v, /uy) = 0%,

where p* and 6* are respectively the pressure and flow
inclination angle across the slip line. However, the density
and velocity may jump abruptly across the slip line.

{b) The wave is an oblique shock. In this case, we start
with the following oblique shock relations and EOS,

P—Po
=] -———F, 17
Pl gsint b "
an § L= poltan b (18)

p+potan’ f

2 2

2 ¢in? =—P,-l, 19
oI = e )
€=€(p,p), (9(}:3(190:.00)), (20)

where g = /1% +v? (go=+/ut+vl), B is the shock angle,
and 8 = Af is the flow deflection angle.

By first substituting (20) into (19) and then (19) into (17),
we find an impiicit relation between p and p, viz. the
Rankine-Hugoniot relation:

e(p, pY—elpg, Po)
P+ po

polp=1-2pq (21)

If p is known, p can be worked out from (21) by the
modified Newton procedure described in the previous
section:

p=p(p) (22)
The shock angle is evaluated through
- (p—polp / }
=sin~’ [ — . 23
g (p—po) pol T° (23)

From (23), (22), and (18), we have the relation between
flow deflection angle é and pressure p:

(24)

5:5(p)=tan_l I:(p__p()) tan lB:I

p + pytan f
The flow inclination then is

9= B y(p)=0,+06 (25a)

LOH AND LIOU

for the flow on the top; and

f=dp(p)=1to—9 (25b)

for the flow on the bottom.

(c} The wave is a Prandtl-Meyer expansion. In this
case, we use the isentropic relations,
Tds=de+ pd(1/p)=0, (26)

where s is the entropy and T the temperature. Equation {26)
leads to the expression for speed of sound,

/p*—e
a* = (dpjdp), = 2222 (27)
e!’
where
de de
ep_a—p., eD:aip-

Equation (27) may be regarded as an ordinary differential
equation for p with initial condition p = py:

dp e
Leljit=——. (28)
dp plp’—e,

In practice, we scale p by using Inip) as the variable to
reduce the stiffness of the ODE and a fourth-order
Runge-Kutta method with adaptive step size is employed to
solve for p. Once p and p are known, ¢° =’ + »? is easily
available from the total enthalpy H,

q*=2(H—e(p. p)—pip), (29)

and the local Mach number M follows directly:

:_HH—elpp)—plp)e,

M?*=g%a
p/pz_ep

{30)

From the isentropic condition and H = const, we have
dh=dp/p,  dg=dp/pq.

The local flow deflection angle 4@ is then
VMI-=1
d8=¢%~1M2—1=+po. (31)

Now the flow inclination becomes

(32a)

p SM?—1
0= Dr(p) =05+ | el
20
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for the flow on the top and

M=
0=0u(p)=0—| Lo"dp  (32b)

e Pq

for the flow on the bottom. The integrals (32) are evaluated
numerically by Simpson’s rule. They play a role in the for-
mulation similar to the Prandtl-Meyer function in perfect
gas.

Therefore, through any state Q,, with p as parameter,
there are two families of state connecting to Q,, namely, the
compression states (p= pg) and the expansion states
{(p < po). As in perfect gas, the two families join smoothly at
Q, and can be regarded as a single family. This makes it
possible to apply Newton's iterative procedure in the solu-
tion of the Riemann problem. We now illustrate the solution
details.

(i) In the p-# plane (Fig. 3), there are two curves
passing through the states Qy= Qr and Qq= Qy; they are
defined as

' 2
60 + JP —.__M—.__._l a’p‘J
o P

PSPy

1 {(p—py)tan
6, +tan 'L P
otan [Mputanlﬁ}
P> Pos
and
( r SMI]
oy LMLy,
o Pq
0=Dy(p) =< PSPy = poytan (33b)
_, [ (p=po) tan
g, — LN P\ E it
o tan [p+potanzﬁ]’
\ P> po-

These curves are sketched in Fig. 3.

(i) the modified Newton procedure as described in the
previous section is then employed to find the intersect
{p*, 0%) of the two curves. The object function in the
Newton procedure is

fip)=P1(p)— Pelp) (34)

and the intersect of the tangent lines passing through Qy
and Qy is used as an initial guess to the solution. In practice
we use numerical derivative to replace the analytical ones.
Usualiy it takes two to four iterations to converge to a
tolerance less than 10 % However, the evaluation of @, and
@y, takes considerably more CPU time than in the perfect
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gas case, which is the price one has to pay for an accurate
real gas result.

(iii} With the slip line values (p*, 6*) calculated, we
calculate p using the appropriate equation ((22) for com-
pression state and the ODE; (28) for expansion) and then
calculate g using (29). Velocity components are easily
obtained by
(35)

u=gqcos g*, v=gq sin 0*.

At the solid boundary, the flow inclination condition is
imposed and one of the curves, say, § = $y{p) degenerates
to a straight line 6=0*=const. parallel to the p axis
(Fig. 3). In [7], this particular problem 1is termed
“poundary Riemann problem.” The solution of a boundary
Riemann problem is similar to the above procedure except
using a different object function:

f(p)=D(p)—0*

or

S(p)=Dy(p)—0*

4. TEST PROBLEMS

The Lagrangian method for real gas is tested in several
examples for accuracy and robustness. The numerical
results are compared with the available exact solutions.
These examples include features of the basic elementary
waves, namely, the oblique shocks (+ ), the slip lines (0),
and the Prandtl-Meyer expansions (— ). In some examples,
we present the real gas solution as well as the perfect gas
solution for comparison. Throughout the examples, the
MKS unit system 1s used. However, for convenience, the
unit for pressure is atmospheric pressure (atm), and the unit
for temperature is K.

The first example is a pure initial value problem, namely
a Riemann problem. The top and bottom states are shown
in Fig. 4. We use 100 uniform cells with %;=0.01 and the
EOS in this example is simply the one for a perfect gas, ie,,
e=(1/(y— 1)) p/p; y=1.4. At a lower temperature such as’
in this problem, Tannechill’s EOS is identical to that of a
perfect gas. From Fig. 4 it is seen that the numerical results
agree well with the perfect gas exact solution (solid lines)
and the slip line and shock are resolved with two and three
points, respectively.

We then turn to consider initial-boundary value
problems. It is the Prandtl-Meyer flow with a turning angle
of 10° at the body surface. The free stream state is p=1,
p=1,and M=10.

Both real and perfect gases are computed for comparison.
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FIG. 4. Computational of perfect gas Riemann problem using real
gas code: (a)~(c), flow variables along a typical time line; (a) pressure,
{b) density, and (¢) Mach number, Solid lines denote exact solutions.
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In this problem 22 nonuniform cells are used, with cell size
growing exponentially:

h; =001,

h=115k ,,  j=2,3,.,22

Figure 5 illustrates the numerical results by the real gas code
developed in the present paper and by the perfect gas code.
For comparison the exact solution is also included. This
problem is another low temperature case and the numerical
results are practicaily identical; both agree very well with
the exact solution. As a matter of fact, the numerical results
arising from different codes are different oniy at the fifth
decimal place.

In the next example, we still consider a Prandtl-Meyer
expansion. However, the temperature is much higher so that
the real gas effect is significant. We intend to show the
numerical results with and without real gas effect. In this
case the turning angle of the body surface is 20° and the free
stream data reads:

Pcc=2=

Hey, =15, v, =0.

Again 22 nonuniform cells are employed, with cell size
growing exponentially:

A =0.01;

hy=1075h,_,,  j=2,3,.,22

With the same free stream data, numerical computations
using real gas and perfect gas EOSs respectively are carried
out. Their results at t=0.12 are illustrated in Fig. 6. For
comparison, exact solutions are also included. It is observed

-with exactly the same initial data; there are differences due

to the real gas effect in the computed pressures, densities,
and, in particular, temperatures.

In the fourth example, we investigate oblique shocks and
their interaction. First, two shocks are generated on both
the upper and lower walls at the inlet of a converging
chanpel, Then the shocks collide with each. other and
produce two new shocks and a slip line between them. The
upper and the lower wall wedge angles are 10° and 20°,
respectively. The flow variables of the oncoming free stream
are

r=2 p=1, w=13.1483, v=0,
The same initial data is used for real gas computation and
perfect gas computation. In both computations, 50 uniform
cells with &, =0.01 are employed. Special treatments at the
sudden body turns as described in [13] are applied to
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FI1G. 5. Computational of a perfect gas Prandtl-Meyer flow using both perfect gas code and real gas code, showing the agreement of the numerical
results: (a} pressure; (b) density; (c) Mach number; (d) temperature calculated by real gas code along a typical time line.

reduce the local numerical errors. Figures 7a and b illustrate
the pressure and density along a typical time line after shock
collision in the real gas case (M =38), along with the exact
solutions (solid lines). The numerical results agree well with
the exact ones; the shocks are seen to be resolved in two
points and the slip line in one point. Figures 8a, b, and c are
the pressure, density, and temperature contours for the real
gas flow. For comparison, the pressure and density contours
for perfect gas are presented in Figs. 9a and b. It is observed
that real gas shock collision takes place slightly later than its
perfect gas counterpart.

The last example presents a more sophisticated problem
which is a simulation of a supersonic jet engine outlet. Two
streams are separated by a solid plate and then at t =0 they
begin to interact. The flow variables for the top stream and
the bottom stream are respectively
p=01, v=10

p=1, u=20,

and
p=0.125,

p=0.0125, u=225, v=0.
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FIG. 6. Computation of a real gas Prandt-Meyer flow using both perfect gas code and real gas code, showing the differences in the numerical results:
(a) pressure; (b) density; (c) temperature along a typical time line.

pressure along a time line

density along time line

1.0 ‘ e ol —
e o
3]
5 {a)
3 |
p (b)
T
="
0.5
o
A ) .
Q—E-e&aa-a-eé'n
A
Laaooaaa0
O‘O n i 1 1 - 0‘0 i 1 1 L e
Q.0 0.2 0.4 Q.56 0.8 1.0 0.0

distance olong time ling

0.2 0.4 0.6 0.8 1.0

distance along time ling

FIG. 7. Flow variables along a typical time line after shock—shock interaction in the real gas channel problem: (a) pressure and (b) density. Solid

lines denote exact solutions.
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FIG. 8. Pressure, density, and temperature contours for the real gas channel problem: (a) isobars; (b) isopyenics; (¢) isotherms.

The solid body surface under the bottom stream bears a
sudden expansion turn of 5° and then extends as a straight
line. The solid plate separating the two streams protrudes
slightly in the forward direction, The interaction of the two
streams produces a shock, a slip line, and an expansion fan.
In addition, another expansion fan is issued from the
sudden turn at the body surface. Subsequently, these waves
interact with one another. The oblique shock bends as it
goes through the interaction with the lower expansion fan
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and then reflects at the body surface. The reflected shock is
hit by the strong slip line and deflected. In the meantime, the
slip line itself is deflected by the collision and a narrow
expansion fan is produced as well. The flow pattern is
sketched in Fig. 10a and in Figs. 10b, ¢, and d we show the
isobars, isopycnics (constant density), and isotherms,
respectively. From Fig. 10b one observes the shock issued,
reflected at the body surface, and deflected at the intersect
with the slip line; on the other hand, the lower expansion fan

.40
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FIG. 9. Pressure and density contours for the perfect gas channel problem using the same initial data as the real gas: (a) isobars and {b) isopycnics.

581/104/1-11



160

p-1.

.40

g1
u—20 v-4

typical time line

LOH AND LIOU

“af
o AT
1510 - '-_——___‘______

()

dcfiecred shock

i

(b)

-0.40
0.00

—
240

040 - ;
0.00

2.40

G.40

-0.40 ~ T T T

T =

2.40

FIG. 10. Pressure, density, and temperature contours for a real gas outlet problem, showing interactions among the waves and shock reflection on
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is seen deflected when passing through the shock and the
slip line. In Fig. 10c the slip line is clearly shown and is seen
deflected after impinging with the reflected shock.

For comparison, the same initial data is used to compute
a perfect gas flow over the same body surface. As in the pre-
vious example of shock collision, the oblique shock in the
perfect gas case hits the body surface slightly earlier (not
shown). Figure 11 shows the more pronounced differences
hetween the real gas and perfect gas results for the profiles
of pressures, densities, and temperatures along a typical
time line A'-4 (shown in Fig 10). Again, the computed
shock and slipline are resolved in one to two cells.

In both computations, 60 uniform cells with #=0.01 are
used in order to cover the flow field we have shown; the
upper 40 celis denote the top stream and the lower 20 cells
denote the bottom stream. The initial time line bears an
inclination angle of 54° which assures the stability in the
time-marching process. Such a numerical stability problem
involves a basic principle of wellposedness that the time line
of a cell must lie outside the fan-shaped domains of influence
issuing from its upper and lower cell interfaces. Details have
been described by Hui and Loh [14].

5. CONCLUDING REMARKS

We have described the detailed formulation and the solu-
tion procedure for the Lagrangian conservative equations of
real gases. The calculations demonstrated the accuracy of
the Lagrangian approach over the Eulerian approach in
handling oblique discontinuities. In particular, the slip line
is resolved in at most two celis. The inherent parallelism,
by following streamlines in the Lagrangian approach,
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also lends itself to the parallel computation. Recent
results demonstrated significant gain in efficiency for the
Lagrangian approach on the Connection Machine com-
puter (CM-2} for both perfect and real gases [15, 16]. The
3D extension, as in the case of the 2D Eulerian approach, is
not all that straightforward if a genuine multidimensional
Riemann solver is demanded. However, allowing some
degrees of approximation can make this extension feasible
in practice. This work is currently underway.
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